

State of Kansas Background Radiation Study

Jason Meinholdt, Mark Ungerer, James Uhlemeyer, David Lawrenz

Radiation Control Program

January 2017

Contents

State of Kansas Background Radiation Survey
Abstract
Acknowledgment
Introduction
Methods4
Sampling Plan4
Gamma Exposure Rate Measurements4
Soil Sample Collection5
Results
Gamma Exposure Rates5
Radionuclide Activities in Soil6
Discussion
Gamma Exposure Rates6
Isotopic Distribution of Radionuclides in Soil7
Uranium Concentration7
Radon Source
Summary
References9
Appendix 1: Kansas Sample Locations10
Appendix 2: RadResponder Sampling Location Map11
Appendix 3: Gamma Exposure Rate Data Table12
Appendix 4: Gamma Exposure Rate Maps18
Appendix 5: Radionuclide Activities with Exposure Rate19
Appendix 6: Uranium Concentration Maps24
Appendix 7: Uranium Concentration with Exposure Rate
Appendix 8: Effect of Elevation on Exposure Rates
Appendix 9: Kansas Radon Maps27

State of Kansas Background Radiation Survey

Abstract

The Kansas Department of Health and Environment's Radiation Control Program (RCP), in conjunction with the Kansas Environmental Public Health Tracking program (EPHT) collaborated on a radiological data collection project for the state of Kansas in July 2015 to address an identified data gap in background radiation knowledge related to natural background radiation. The data acquired is based on measurements for gamma radiation measurements and laboratory analysis of uranium, thorium, and radium activities in soil. The purpose for the collection of measurements and soil gamma spectroscopy analysis results were to establish a baseline dataset. In the future, this dataset can be used in the event of a radiological emergency, for regulatory purposes, or risk evaluation.

Acknowledgment

This report was supported by many. We thank Jason Barney and D. Shay Hannah for assistance with coordinating the sample collection process and instrument expertise. This would not have been possible without Benjamin McCaffrey for his professional work collecting measurements and samples across the state. We also thank everyone at the Iowa State Hygienic Radiochemistry Laboratory for their expedient and high quality laboratory analysis. Most of all, Kimberly Steves, Jessica Willard, and their respective departments are appreciated for supporting this project from the beginning.

Introduction

The Kansas Department of Health and Environment routinely receives requests for information regarding radiation risk from the general public. Previously the relevant data available came from the United States Geological Society (USGS) background radiation maps for gamma radiation, uranium concentrations, and thorium concentrations, which were likely generated from models based on flyover spectrometer data and not from actual samples or ground level surveys (Duval, Carson, Holman, Darnley, 2005). More exposure hazard information and specific radiation data was necessary to be able to adequately answer their questions. This type of data would also be informative when conducting environmental public health investigations. Therefore, the Kansas Radiation Control Program partnered with the Kansas Environmental Public Health Tracking program to fund, support, analyze, and display data for the background radiation project. Radiological data across the state of Kansas was collected to establish a current baseline dataset for background radiation.

This project and resulting article was supported by the cooperative agreement number, NU38EH000618-08, funded by the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention or the Department of Health and Human Services.

The initial purpose of the project was to establish a baseline data set based on ground measurements for background gamma radiation levels and for uranium, thorium, and radium activities in the soil. Forty-seven sampling sites were selected to cover the state in a grid pattern. Sample locations were chosen where the soil had not been disturbed. The collection procedure was the same one utilized by the nuclear power plant environmental monitoring program within the state. Samples and survey data were collected from all the sites in 2015 and sent to a radiochemistry laboratory for analysis.

Information that was collected during and after sampling was uploaded into a system called RadResponder (<u>www.radresponder.net</u>), which is utilized by the Kansas Radiation Control Program for data aggregation and emergency preparedness activities. The RadResponder Network was created to support radiological response and has also served as a valuable tool for data management and quality control. Radiation Control Program staff are able to collect additional gamma radiation readings in the future to add to the database.

Analysis has been conducted and shows that gamma exposure rate data is consistent with trends depicted in the USGS terrestrial gamma ray map (Duval et al., 2005) in that exposure rates are higher towards the western half of the state. In addition to the exposure rate data, soil analysis shows that radionuclide activities are largely consistent with both the Oak Ridge National Laboratory study ORNL/TM-7343 (Myrick, Berven, Haywood, 1981), and the extensive data collected in Kansas due to nuclear power plant environmental monitoring. When comparing exposure rate data to specific radionuclide activities identified, there is no evidence to confirm correlation between any single radionuclide and overall gamma exposure rate.

Methods

Sampling Plan

The state was divided into a grid to identify an even distribution of samplings points. The grid was chosen as it corresponded well with existing roads and nearby communities. At each of the locations identified, undisturbed areas were selected. A map was created to identify locations (Appendix 1). The sampled locations are listed in Table 1:

Holton	Highland	Seneca	Alma	Olathe	Ottawa	Mapleton	Hamilton
Belleville	Randolph	Beloit	Baxter Springs	Galesburg	Geneseo	Newton	Plevna
Lucas	Caldwell	Kiowa	Kingman	Greensburg	Protection	Liberal	Elkhart
Garden City	Coolidge	Leoti	Dighton	Hanston	Otis	Alton	Smith Center
Wallace	Goodland	St. Francis	Atwood	Hoxie	Ellis	Admire	Atlanta
Abilene	Lincolnville	Norton	Oakley	Ulysses	Montezuma	Elgin	

Table 1: Sampling Locations

Gamma Exposure Rate Measurements

Exposure rate measurements were taken using two instruments; a NaL Micro-R meter (Ludlum Model 19) and a pressurized ion chamber (Victoreen 451P). Gamma readings were taken three feet above the ground surface prior to soil sampling. Instruments remained consistent throughout the data collection period and had recent calibration reports. For data analysis purposes, the exposure rates from the Ludlum Model 19 Micro-R meter were used. Each of the instruments were calibrated and read in conventional units and were converted to the International System of Units (SI) mathematically. Data was logged using the RadResponder Network application on an iPad (Appendix 2). Date, time, GPS

coordinates, meter information, height, observations, and measurement data were uploaded into RadResponder during collections to ensure consistent data throughout the process. The RadResponder Network is the product of collaboration between Federal Emergency Management Agency (FEMA), Department of Energy (DOE) / National Nuclear Security Administration (NNSA), and the Environmental Protection Agency (EPA).

Soil Sample Collection

Surficial soil samples of 1000 cm³ were collected at each location. Samples were contained in chemically resistant polypropylene containers with matching airtight lids. Undisturbed (no visual signs of soil disturbance and away from any roadways or buildings) locations were selected. Supplies were decontaminated after each sample to prevent cross contamination. To allow secular equilibrium to be reached, samples remained sealed for a minimum of 60 days (Figure 1). The samples were then sent to the lowa State Hygienic Laboratory for analysis by both gamma spectroscopy and by inductively coupled plasma – mass spectrometry (ICP-MS) for uranium content. Sample results were reported in conventional units (pCi/kg) and converted to SI units mathematically. Both man-made and naturally occurring radionuclides were analyzed, but only those naturally occurring will be discussed in this report. Those radionuclides include: Actinium-228, Bismuth-212, Bismuth-214, Lead-212, Lead-214, Radium-224, Thorium-228, and Potassium-40.

$$t_{max} = rac{\ln\left(rac{\lambda_d}{\lambda_p}
ight)}{\lambda_d - \lambda_p}$$

where λ_{p} = decay constant of parent; and λ_{d} = decay constant of daughter

Figure1: Equation to calculate time to reach max activity of radioactive daughter

Results

Gamma Exposure Rates

The Ludlum Model 19 Micro-R meter results ranged from 0.07 to 0.16 μ Sv/hr (7 to 16 μ R/hr). The statewide average gamma exposure rate using the Ludlum Model 19 Micro-R meter was 0.12 μ Sv/hr (12 μ R/hr). The Victoreen 451P pressurized ion chamber results ranged from 0.10 to 0.18 μ Sv/hr (10 to 18 μ R/hr) with higher readings found in the north central area of the state. The statewide average gamma exposure rate using the Victoreen 451P pressurized ion chamber was 0.142 μ Sv/hr (14.2 μ R/hr). Locations measured were logged in RadResponder (Appendix 2).

Exposure rate data tables can be found in Appendix 3. Heat maps of exposure rate readings can be found in Appendix 4.

Radionuclide Activities in Soil

Soil sample analysis resulted in ranges of activities for each nuclide depending on location. In addition to gamma spectroscopy analysis, each sample was analyzed for uranium content by ICP-MS. Results are listed in Table 2:

Nuclide	Minimum	Maximum	Unit	Minimum	Maximum	Unit
Actinium-228	15.98 ± 2.07	60.31 ± 5.85	Bq/kg	432 ± 56.2	1630 ± 158	pCi/kg
Bismuth-212	>4.221	141.71 ± 5.85	Bq/kg	>1141	3830 ± 158	pCi/kg
Bismuth-214	13.76 ± 1.31	78.07 ± 4.55	Bq/kg	372 ± 35.4	2110 ± 123	pCi/kg
Lead-212	>0.72 ¹	54.02 ± 2.58	Bq/kg	>19.51	1460 ± 69.8	pCi/kg
Lead-214	15.65 ± 1.26	90.28 ± 4.92	Bq/kg	423 ± 34.1	2440 ± 133	pCi/kg
Radium-224	12.77 ± 6.51	51.8 ± 13.84	Bq/kg	345 ± 176	1400 ± 374	pCi/kg
Thorium-228	>18.321	131.35 ± 43.66	Bq/kg	>4951	3550 ± 1180	pCi/kg
Potassium-40	61.42 ± 31.60	795.5 ± 37.37	Bq/kg	1660 ± 854	21500 ± 1010	pCi/kg
Uranium content	0.64	3.30	mg/kg	0.64	3.30	ppm

¹minimum detectable concentration

Table 2: Minimum and Maximum Radionuclide Activity Found in Soil

Discussion

Gamma Exposure Rates

The Ludlum Model 19 Micro-R meter showed high readings further west, as expected due to geology and elevation. The Victoreen 451P pressurized ion chamber showed higher readings in the north central area of the state. The Oak Ridge National Laboratory Study (Myrick et al., 1981) found higher exposure rate readings in western Kansas, ranging from 0.14 μ Sv/hr (14 μ R/hr) at the furthest location to the west and 0.098 μ Sv/hr (9.8 μ R/hr) furthest to the east. The ORNL study was limited to points along Interstate 70. The USGS terrestrial radiation report (Duval et al., 2005) shows gamma-ray absorbed dose to be highest in the northern and western part of the state, consistent with the measurements from the Ludlum Model 19 Micro-R meter, but differing from those using the Victoreen 451P pressurized ion chamber. This could be due to different energy response between the instruments.

In an effort to quantify the effect of cosmic radiation on exposure rates, a correlation coefficient was calculated based on elevation change throughout the state (Appendix 8). A weak correlation coefficient of 0.3945 was found.

Isotopic Distribution of Radionuclides in Soil

Although not directly measured using gamma spectroscopy, it can be inferred that Radium-226 is in equilibrium with Bismuth-214 due to the time allowed to reach secular equilibrium (Figure 2). The activity of Radium-226 in the soil is consistent with that documented in the ORNL TM-7343 study (Myrick et al., 1981). Their results showed Radium-226 in activities from 12.58 to 51.8 Bq/kg (340 to 1400 pCi/kg) whereas the current study showed activities from 13.76 to 78.07 Bq/kg (372 to 2110 pCi/kg). Using the soil sample analysis results combined with exposure rate data across the state, correlation with these naturally occurring radionuclides could be measured. Using the data collected of all naturally occurring radionuclides, an overlay of the data was created with isotopic concentrations to determine potential correlation with exposure rate measurements (Appendix 5). No specific radionuclide had a strong correlation with exposure rates, however, there is a correlation between the summation of all natural radionuclides measured and exposure rate at any given location. A scatter plot was created showing this correlation (Appendix 5). Other factors contribute to gamma exposure rates at three feet above the ground, such as cosmic radiation or non-naturally occurring radionuclides.

Figure 2: Decay Chain of Radium-226 Correlation coefficients are listed in Table 3:

Radionuclide	Correlation coefficient
Actinium-228	0.6579
Bismuth-212	0.031
Bismuth-214	0.5792
Lead-212	0.6034
Lead-214	0.5735
Radium-224	0.6204
Thorium-228	0.3001
Potassium-40	0.6158
Uranium content	0.2012
Summation of all natural radionuclides	0.7705

Table 3: Correlation coefficients of radionuclides and exposure rates

Uranium Concentration

The pattern for both exposure rate measurements and soil analysis data is consistent with previous Kansas data from both the ORNL TM-7343 study (Myrick et al., 1981) and USGS flyover gamma-ray exposure data (Duval et al., 2005). In addition, uranium concentration data collected by the USGS in the aforementioned study is comparable to the results found in the current study. The USGS study shows concentrations of uranium across the state ranging from approximately 0.7 ppm to 3.0 ppm. For this study, samples ranged from 0.64 mg/kg (equivalent to ppm by mass) to 3.3 mg/kg (Appendix 6). The average concentration across the state was 1.82 mg/kg. Using the uranium concentration data per

location, we were also able to make direct comparisons to exposure rate measurements at each location. Uranium concentration showed little correlation with the gamma exposure rate at three feet with a correlation coefficient of 0.2012 (Appendix 7).

Radon Source

Soil analyses may indicate if there are locations that are more or less likely to have radon concentrations in the soil. As noted by the Environmental Protection Agency (EPA), most of Kansas is determined to be in radon zone 1, which is the zone predicted to have average indoor radon concentration levels of greater than 4.0 pCi/L (White, 1993). The Kansas Radon Program has determined that 42.6% of homes tested in Kansas have high levels of Radon. (www.kansasradonprogram.org)

Radon is the decay product of Radium-226. Because of the decay of Radium-226 into Radon-222 gas, it can reasonably be inferred that locations with higher activities of Radium-226 have greater potential for radon emanation (White, 1993). As many factors contribute to the potential for elevated indoor radon levels in homes, such as building design, air tightness, heating and cooling systems, and weather, data collected during this study cannot be used as a predictor of elevated indoor radon levels. Maps produced using this data show the amount of source activity of the radioactive parent of Radon-222 in each of the samples collected. A map showing the activity of Bismuth-214 (in equilibrium with Radium-226) can be found in Appendix 9 along with maps produced by the Kansas Geological Survey and the Kansas Department of Health and Environment Environmental Public Health Tracking Network. The Kansas County Radon Map from the Kansas Radon Program is also included based on EPA zone levels and actual indoor radon measurements across the state.

Summary

This study comprised the collection of radiation data at 47 undisturbed locations evenly distributed across the state of Kansas. In addition to the data collected specifically for this study, additional data points can be collected by the Radiation Control Program during field activities for dataset expansion and future research. The data obtained is consistent with previous conclusions from ORNL and USGS regarding background gamma ray exposure data based on a much smaller sample size. The gridded sampling locations across the state provides a comprehensive picture of background radiation. Although slight correlation can be seen at various locations on several different radionuclides, individual radionuclides do not have strong correlation with exposure rate. The strongest correlation was found with a summation of all natural radionuclides in a given sample with a correlation coefficient of 0.7705. Cosmic radiation likely contributes, particularly in the higher elevations in the western part of the state. Expansion of data analysis including man-made contribution, mostly from fallout due to atmospheric nuclear weapons testing around the world, can be done in the future. This data also indicates radon source activity in each of these samples by quantification of Radium-226 at each location with soil analysis.

Development of this dataset and resulting analysis provides the state with an informative baseline that can be used for comparative research in the future. Most notably in any type of activity that affects radiation levels, such as technologically enhanced naturally occurring radioactive material (TENORM), transportation accidents, nuclear power plant accidents, or acts of terrorism.

References

Myrick, T. E., Berven, B. A., & Haywood, F. F. (November 1981). State Background Radiation Levels: Results of Measurements Taken During 1975-1979. Retrieved from <u>http://web.ornl.gov/info/reports/1981/3445605600481.pdf</u> ORNL TM-7343

Duval, J. S., Carson, J. M., Holman, P. B., & Darnley, A. G. (2005). USGS Open-File Report 2005-1413: Terrestrial Radioactivity and Gamma-ray Exposure in the United States and Canada. Retrieved from <u>https://pubs.usgs.gov/of/2005/1413/</u>

White, S. W. (September 1993). EPA's Map of Radon Zones. Retrieved from <u>https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=0000098R.TXT</u> EPA-402-R-93-071

Kansas Radon County Maps. (2014). Retrieved from <u>http://kansasradonprogram.org/county-</u> <u>map</u> Copyright 2014, KDHE and Kansas State University.

Lyle, S., Killion, M., & Menager, H. Average Indoor Radon Measurements with Respect to the Surficial Geology of Kansas [Map]. Retrieved from <u>https://keap.kdhe.state.ks.us/Ephtm/</u>. Created by Kansas Geological Survey and Kansas Environmental Public Health Tracking Network

RadResponder - RadResponder Network. (n.d.). Retrieved from http://www.radresponder.net/

Additional Information can be obtained by contacting the Kansas Radiation Control Program (<u>http://www.kdheks.gov/radiation/index.html</u>).

More information is available about the Kansas Environmental Public Health Tracking Program on their website https://keap.kdhe.state.ks.us/Ephtm/ or by email kdhe.ksepht@ks.gov

Appendix 1: Kansas Sample Locations

Appendix 2: RadResponder Sampling Location Map

r								
Collected	Value	Units	Height	Unit	Description	Meter	Latitude	Longitude
7/9/2015						Ludlum 19 -		
14:58	13	uR/hr	3	foot	Abilene, KS	SN#: 120905	38.949102	-97.228049
						Victoreen		
7/9/2015						451P - SN#:		
15:02	15	uR/hr	3	foot	Abilene, KS	4935	38.949102	-97.228049
7/30/2015						Ludlum 19 -		
11:22	11	uR/hr	3	foot	Admire, KS	SN#: 120905	38.65853	-96.06987
						Victoreen		
7/30/2015						451P - SN#:		
11:54	10	uR/hr	3	foot	Admire, KS	4935	38.65853	-96.06987
7/7/2015						Ludlum 19 -		
14:32	9	uR/hr	3	foot	Alma, KS	SN#: 120905	38.99269	-96.274662
						Victoreen		
7/7/2015						451P - SN#:		
15:25	17	uR/hr	3	foot	Alma, KS	4935	38.99269	-96.27466
7/27/2015						Ludlum 19 -		
13:43	14	uR/hr	3	foot	Alton, KS	SN#: 120905	39.480951	-98.918404
						Victoreen		
7/27/2015						451P - SN#:		
13:47	16	uR/hr	3	foot	Alton, KS	4935	39.480951	-98.918404
7/16/2015						Ludlum 19 -		
17:06	11	uR/hr	3	foot	Atlanta, KS	SN#: 120905	37.41765	-96.78645
						Victoreen		
7/16/2015						451P - SN#:		
17:11	17	uR/hr	3	foot	Atlanta, KS	4935	37.41765	-96.78645
7/29/2015						Ludlum 19 -		-
10:52	12	uR/hr	3	foot	Atwood, KS	SN#: 120905	39.810078	101.046863
						Victoreen		
7/29/2015						451P - SN#:		-
10:54	13	uR/hr	3	foot	Atwood, KS	4935	39.810078	101.046863
7/14/2015					Baxter	Ludlum 19 -		
12:22	10	uR/hr	3	foot	Springs, KS	SN#: 120905	37.06755	-94.726873
						Victoreen		
7/14/2015					Baxter	451P - SN#:		
12:30	12	uR/hr	3	foot	Springs, KS	4935	37.06751	-94.726825
						Victoreen		
7/10/2015					Belleville,	451P - SN#:		
11:36	18	uR/hr	3	foot	KS	4935	39.841595	-97.646533
7/10/2015					Belleville,	Ludlum 19 -		
11:37	13	uR/hr	3	foot	KS	SN#: 120905	39.841595	-97.646533
7/13/2015						Ludlum 19 -		
12:57	11	uR/hr	3	foot	Beloit, KS	SN#: 120905	39.47425	-98.09769

Appendix 3: Gamma Exposure Rate Data Table

						Victoreen		
7/13/2015						151P - SN#·		
13.00	17	uR/hr	3	foot	Beloit KS	1935	39 /17/25	-98 09769
7/20/2015	17	unym	5	1001		1000 - 10	55.47425	50.05705
12.20	15	uR/hr	3	foot	Caldwell KS	SN#· 120905	37 04551	-97 582/68
12.24	15	unym	5	1001	Caldwell, KS	Victoroon	37.04331	-57.582408
7/20/2015								
12:27	1.1	u D/br	2	faat	Caldwall KS	431F - 3N#.	27 04551	07 502460
7/22/2015	14	ukyili	5	1001		4955	57.04551	-97.562406
12:15	16	uD/br	2	fact	Coolidge,	LUUIUIII 19 -	20 04207	102 02745
15.15	10	ukyili	5	1001	кз	SIN#. 120905	56.04567	-102.02745
7/22/2015					Coolidao			
12:10	17	uD/br	2	faat	Coolidge,	451P - 5N#.	20 04207	102 02745
7/22/2015	17	ukyili	5	1001	K3	4955	56.04567	-102.02745
1,23/2015	10	uD/br	2	fact	Dighton KS	LUUIUIII 19 -		100 45990
1:04	12	uk/nr	5	1001	Dignton, KS	SIN#: 120905	38.33433	-100.45889
7/22/2015								
1,09	10	uD/br	2	fact	Dighton KS	451P - 5N#:		100 45990
1:08	13	uk/nr	5	1001	Dignton, KS	4935	38.33433	-100.45889
//16/2015	10	D./h.r	2	faat		Ludium 19 -	27.00007	
10:50	10	uk/nr	3	1001	Eigin, KS	SIN#: 120905	37.00667	-96.2663
7/10/2015						Victoreen		
//16/2015	10	D./h.r	2	faat		451P - SN#:	27.00007	
1/:01	13	uk/nr	3	1001	Eigin, KS	4935	37.00667	-96.2663
//21/2015	-	D./h.r	2	faat		Ludium 19 -	27 021040	-
14:12	/	uk/nr	3	1001	Elkhart, KS	SIN#: 120905	37.021848	101.8/422/
7/21/2015								
//21/2015	10	D./h.r	2	faat		451P - SN#:	27 021040	
14:15	12	uk/nr	3	1001	Elkhart, KS	4935	37.021848	101.874227
//30/2015	10	D./h.v	2	6		Ludium 19 -	20.04276	
10:35	12	uk/nr	3	1001	EIIIS, KS	SIN#: 120905	38.94276	-99.53575
7/20/2015						victoreen		
//30/2015	10	D./h.v	2	6		451P - SN#:	20.04276	
11:04	12	uk/nr	3	1001	EIIIS, KS	4935	38.94276	-99.53575
//14/2015	0	D //	2	6	Galesburg,	Ludium 19 -	27 474404	05 070077
14:34	9	uk/nr	3	100t	KS	SN#: 120905	37.471181	-95.379077
7/4 4/2045						Victoreen		
//14/2015	10	D (1		c .	Galesburg,	451P - SN#:	27.474.04	05 070077
14:42	10	uk/nr	3	100t	KS	4935	37.471181	-95.379077
//22/2015	10	D //		c .	Garden	Ludium 19 -	20.002.002	-
10:29	13	uR/hr	3	foot	City, KS	SN#: 120905	38.003683	100.957136
7/22/22/-						Victoreen		
//22/2015		D.//	-		Garden	451P - SN#:		-
10:33	15	uK/hr	3	toot	City, KS	4935	38.003683	100.957136
7/15/2015		- <i>"</i>			Geneseo,	Ludlum 19 -		
11:42	13	uR/hr	3	foot	KS	SN#: 120905	38.522127	-98.145845

						Victoreen		
7/15/2015					Geneseo,	451P - SN#:		
11:51	12	uR/hr	3	foot	кs	4935	38.522127	-98.145845
7/28/2015		-			Goodland,	Ludlum 19 -		
19:53	14	uR/hr	3	foot	KS	SN#: 120905	39.3663	-101.72576
						Victoreen		
7/28/2015					Goodland,	451P - SN#:		
19:58	15	uR/hr	3	foot	кs	4935	39.3663	-101.72576
7/21/2015					Greensburg.	Ludlum 19 -		
1:15	13	uR/hr	3	foot	KS	SN#: 120905	37.62006	-99.26744
						Victoreen		
7/21/2015					Greensburg	451P - SN#:		
1:20	14	uR/hr	3	foot	KS	4935	37,62006	-99,26744
7/9/2015		unq m		1000	Hamilton	Ludlum 19 -	57102000	55120711
11.00	10	uR/hr	3	foot	KS	SN#: 120905	37 96115	-96 17345
11.00	10	arym	5	1000	110	Victoreen	57.50115	50.17515
7/9/2015					Hamilton	151P - SN#		
11.05	17	uR/hr	3	foot	KS	4911 - 5N # . 7935	37 96115	-96 173/15
7/22/2015	17	unym	5	1001	10	Ludlum 10 -	57.50115	50.17545
10.02	1/	uR/hr	3	foot	Hanston KS	SN#: 120905	38 13156	-00 707377
10.02	14	unym	5	1001		Victoreen	38.13130	-55.707577
7/22/2015								
10.07	15	uP/br	2	foot	Hanston KS	431F - 3N#.	20 12156	00 707277
7/7/2015	15	ukyili	5	1001		4955	56.15150	-99.707577
0.50	10	uD/br	2	fact	rigilialiu,	SNH: 12000E	20 040400	
9.30	10	unyini	5	1001	КЭ	Victoroop	39.049400	-93.332393
7/7/2015					Highland			
10:12	15	uD/br	2	faat	rigilialiu,	431F - 3N#.	20 947106	05 222496
7/6/2015	15	unyini	5	1001	КЭ	4955	39.647190	-95.525460
12.22	10	uP/br	2	foot	Holton KS	SNH: 12000E	20 175120	
15.22	10	unyini	5	1001		Victoroop	39.473129	-93.737137
7/6/2015								
12:42	10	uD/br	2	faat	Haltan KS	451P - 5N#.	20 475002	
7/20/2015	12	uk/nr	3	1001		4935	39.475002	-95.757347
129/2015	1.4	uD/br	2	fact	Havia KS	LUUIUIII 19 -	20 221227	-
12:25	14	ик/пг	5	1001	noxie, KS	SIN#: 120905	39.321337	100.443251
7/20/2015						victoreen		
//29/2015	4.5		2	6		451P - SN#:	20 224227	-
12:28	15	uk/nr	3	1001	Hoxie, KS	4935	39.321337	100.443251
//20/2015	10		2	6	Kingman,	Ludium 19 -		00 425270
15:42	10	uk/nr	3	TOOT	ĸs	SIN#: 120905	37.00055	-98.1353/8
7/20/2045					Kinger	victoreen		
//20/2015	10	uD /ha	_	fa -+	Kingman,	451P - SN#:		00 125270
15:45	12	uk/nr	3	100t	KS	4935	37.00055	-98.1353/8
//20/2015	10	D.//	_			Ludium 19 -	27 020050	00 500550
14:01	13	uK/hr	3	toot	Kiowa, KS	SN#: 120905	37.020853	-98.503552

						Victoreen		
7/20/2015						451P - SN#:		
14:03	16	uR/hr	3	foot	Kiowa, KS	4935	37.020853	-98.503552
7/22/2015						Ludlum 19 -		-
13:43	15	uR/hr	3	foot	Leoti, KS	SN#: 120905	38.4822	101.332616
7/21/2015						Ludlum 19 -		-
12:48	8	uR/hr	3	foot	Liberal, KS	SN#: 120905	37.11234	100.921648
						Victoreen		
7/21/2015	10	D.//				451P - SN#:		-
12:51	13	uR/hr	3	foot	Liberal, KS	4935	37.11234	100.921648
//9/2015	10	uD/ha	2	faat	Lincoinville,	Ludium 19 -		
15:17	12	uk/nr	3	1001	KS	SN#: 120905	38.50797	-96.95581
7/0/2015					Lincolnvillo			
15.22	1/	uR/hr	3	foot	ks	431F - 3N#. 1035	38 50797	-06 05581
7/17/2015	14	unym	5	1001	13	4955 Ludlum 19 -	38.30737	-50.55581
11:22	11	uR/hr	3	foot	Lucas, KS	SN#: 120905	39,075298	-98.540538
		unq m				Victoreen	331073230	5010 10000
7/17/2015						451P - SN#:		
11:27	15	uR/hr	3	foot	Lucas, KS	4935	39.07539	-98.540638
7/8/2015					Mapleton,	Ludlum 19 -		
15:58	12	uR/hr	3	foot	KS	SN#: 120905	38.00788	-94.89707
						Victoreen		
7/8/2015					Mapleton,	451P - SN#:		
16:04	11	uR/hr	3	foot	KS	4935	38.00788	-94.89707
7/21/2015					Montezuma,	Ludlum 19 -		-
16:53	14	uR/hr	3	foot	KS	SN#: 120905	37.607198	100.415889
7/24/2045						Victoreen		
//21/2015	45	D //	2	.	Montezuma,	451P - SN#:	27 607400	-
10:50	15	uk/nr	3	1001	КЗ	4935	37.607198	100.415889
//15/2015	17	uD/br	2	faat	Nowton KS	Ludium 19 -	20 072110	07 270171
15.09	12	икупт	5	1001	Newton, KS	Victoreen	56.072116	-97.579171
7/15/2015						151P - SNH		
15.12	16	uR/hr	3	foot	Newton KS	4935	38 072118	-97 379171
7/28/2015	10	unym	5	1001		Ludlum 19 -	30.072110	57.575171
0:43	14	uR/hr	3	foot	Norton, KS	SN#: 120905	39.83354	-99.79534
		u,				Victoreen		
7/28/2015						451P - SN#:		
0:48	13	uR/hr	3	foot	Norton, KS	4935	39.83354	-99.79534
7/28/2015						Ludlum 19 -		
0:43	14	uR/hr	3	foot	Norton, KS	SN#: 120905	39.83354	-99.79534
7/28/2015						Ludlum 19 -		
19:14	16	uR/hr	3	foot	Oakley, KS	SN#: 120905	39.10491	-100.83267

						Victoreen		
7/28/2015						451P - SN#:		
19:20	17	uR/hr	3	foot	Oakley, KS	4935	39.10491	-100.83267
7/8/2015						Ludlum 19 -		
9:37	10	uR/hr	3	foot	Olathe, KS	SN#: 120905	38.871207	-94.862691
						Victoreen		
7/8/2015						451P - SN#:		
10:27	15	uR/hr	3	foot	Olathe, KS	4935	38.87121	-94.86269
7/23/2015						Ludlum 19 -		
11:39	14	uR/hr	3	foot	Otis, KS	SN#: 120905	38.535688	-99.032938
						Victoreen		
7/23/2015						451P - SN#:		
11:42	15	uR/hr	3	foot	Otis, KS	4935	38.535688	-99.032938
7/8/2015						Ludlum 19 -		
11:18	12	uR/hr	3	foot	Ottawa, KS	SN#: 120905	38.617325	-95.27898
						Victoreen		
7/8/2015						451P - SN#:		
11:22	13	uR/hr	3	foot	Ottawa, KS	4935	38.617325	-95.27898
7/15/2015						Ludlum 19 -		
15:14	10	uR/hr	3	foot	Plevna, KS	SN#: 120905	37.9701	-98.29412
						Victoreen		
7/15/2015						451P - SN#:		
15:19	15	uR/hr	3	foot	Plevna, KS	4935	37.9701	-98.29412
7/21/2015					Protection,	Ludlum 19 -		
10:23	11	uR/hr	3	foot	KS	SN#: 120905	37.192372	-99.500976
						Victoreen		
7/21/2015					Protection,	451P - SN#:		
10:27	13	uR/hr	3	foot	KS	4935	37.192372	-99.500976
7/10/2015					Randolph,	Ludlum 19 -		
11:44	12	uR/hr	3	foot	KS	SN#: 120905	39.4432	-96.7387
						Victoreen		
7/10/2015					Randolph,	451P - SN#:		
11:49	16	uR/hr	3	foot	KS	4935	39.4432	-96.7387
7/7/2015						Ludlum 19 -		
11:50	9	uR/hr	3	foot	Seneca, KS	SN#: 120905	39.83174	-96.04267
						Victoreen		
7/7/2015						451P - SN#:		
11:53	17	uR/hr	3	foot	Seneca, KS	4935	39.83174	-96.04267
7/27/2015					Smith	Ludlum 19 -		
14:44	14	uR/hr	3	foot	Center, KS	SN#: 120905	39.756311	-98.804565
						Victoreen		
7/27/2015					Smith	451P - SN#:		
14:47	13	uR/hr	3	foot	Center, KS	4935	39.756311	-98.804565
7/28/2015					St. Francis,	Ludlum 19 -		
20:09	12	uR/hr	3	foot	KS	SN#: 120905	39.78947	-101.80042

						Victoreen		
7/28/2015					St. Francis,	451P - SN#:		
20:16	12	uR/hr	3	foot	KS	4935	39.78947	-101.80042
7/21/2015						Ludlum 19 -		-
15:43	12	uR/hr	3	foot	Ulysses, KS	SN#: 120905	37.564265	101.308239
						Victoreen		
7/21/2015						451P - SN#:		-
15:45	14	uR/hr	3	foot	Ulysses, KS	4935	37.564265	101.308239
7/28/2015						Ludlum 19 -		
19:25	15	uR/hr	3	foot	Wallace, KS	SN#: 120905	38.91737	-101.56821
						Victoreen		
7/28/2015						451P - SN#:		
19:33	14	uR/hr	3	foot	Wallace, KS	4935	38.91737	-101.56821

Appendix 4: Gamma Exposure Rate Maps

Appendix 5: Radionuclide Activities with Exposure Rate

Appendix 6: Uranium Concentration Maps

Kansas uranium concentration

Appendix 8: Effect of Elevation on Exposure Rates

Appendix 9: Kansas Radon Maps

Chevenne	e Rat	wlins	Decatur	Norton	Phillips	Smith	Jewell	Republic	Washing	ilor Mais	shall Ne	maha Bros	AN DP	3
Sherman	Th	omas	Sheridan	Graham	Rooks	Osboine	Mitchell	Cloud	Clay	Riley	PT*	Dackson	Atchisor	1.140
Wallace	Log	an	Gove	Trego	Ellis	Russell	Lincoln	Ottawa	DK*	Geary	K WB	* 514*	Douglas	WY*
Greeley 4	Nichita	Scott	Lane	Ness	Rush	Barton	Eliswoith	McPheison		Moni	s Lyo	Osage n	Franklir	Miami
		Finner		Hodgemar	Pawnee		Rice	Harv	Mano	n Chas	ie in the second se	Coffey	AN*	Linn
Hamilton	ceanny	- miles	Gray	Ford	Edwards	Stafford	Reno		1	Butler	areenwo	oc Woodson	Allen	Bourbon
Stanton	Grant	Haske		1	Kiowa	Fran	Kingmar	Sedgw	lick		Elk	Wilson	Neosho	Grawfurd
Moiton S	Stevens	Bewa	d Mead	e Clark	Comarche	Barber	Harpe	r Sumn	ier (Cowley	CQ*	MG*	Labette	CK*

Average Radon Level = 5.1 pCi/L Maximum Reported Radon Level = 1,121.6 Total Number of Measurements = 73,959 Total Measurements 4 pCi/L or greater = 31,539 Total Measurements 20 pCi/L or greater = 1,957

Copyright 2014, KDHE and Kansas State University. Caution: This map has been produced from the results of a limited statewide indoor radon survey completed by KDHE in 1988, with the addition of indoor radon data collected since. Data used for this map was current through June 2014. As further data becomes available, revision will be necessary. This map is provided free of charge to the public and is generated for study

purposes only. Permission is hereby given to reproduce this map provided it is reproduced in its entirety without modification. This map cannot be used to characterize or predict indoor radon levels at any specific area or location. Measurement must be performed to determine radon levels in any given residence or building. Contact the Kansas Radon Program at (800) 693-5343.